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𝑎𝑎 Contact radius  

𝑃𝑃 Indenter load 

h Indentation depth 

𝑅𝑅𝑖𝑖 Spherical tip radius 

𝐸𝐸𝑟𝑟 Reduced modulus 

𝐸𝐸𝑠𝑠, 𝐸𝐸𝑖𝑖 Elastic modulus of sample and indenter 

𝜈𝜈𝑠𝑠, 𝜈𝜈𝑖𝑖 Poisson ratio of sample and indenter 

𝑝𝑝𝑚𝑚 Mean contact pressure 

𝑝𝑝𝑜𝑜 Mean pressure of contact 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 Maximum shear stress at first pop-in 

𝜏𝜏𝑦𝑦 Local shear yield strength 

𝜏𝜏𝑆𝑆𝑆𝑆 Maximum shear stress at second pop-in load  

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 Maximum shear stress at first pop-in 

∆𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 Stress drop associated with initiation of first shear band 

𝜏𝜏2 Stress created solely due to the second shear band 

s Vector representing a collection of sample sizes 
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𝑠𝑠𝑙𝑙 lth sample size in s 

𝑚𝑚 Maximum sample size  

N Number of random samples selected for each sample size 

𝑈𝑈 Dataset 

𝑢𝑢  Data point 

𝑢𝑢𝑖𝑖 ith data point in 𝑢𝑢 

𝜃𝜃0 Initial parameter space 

𝑓𝑓(𝑢𝑢) Probability density function 

𝜃𝜃𝑁𝑁
[𝑠𝑠𝑙𝑙]�  Best fitting parameters for N random samples of each sample size  

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
[𝑠𝑠𝑙𝑙]  Mean of parameter space for each sample size 

𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣
[𝑠𝑠𝑙𝑙]  Variance of parameter space for each sample size 

U Dataset 

𝜃𝜃 Parameter space for 𝑓𝑓(𝑥𝑥) 

𝜇𝜇 Mean of a Gaussian distribution 

𝜎𝜎 Standard deviation of a Gaussian distribution 

𝐿𝐿(. ) Likelihood function 

𝜃𝜃� Best fitting parameters 

n Total number of data points or number of indents on the sample 

𝛾𝛾 Total number of model parameters 

𝜃𝜃𝛾𝛾 𝛾𝛾th parameter of a distribution 

(. )�  Maximum Likelihood Estimate of any parameter, such as 𝜃𝜃, 𝜇𝜇, 𝜎𝜎 

𝛼𝛼 Location parameter of Weibull distribution 

𝛽𝛽 Scale parameter of Weibull distribution 

𝑚𝑚 Weibull modulus  

𝑓𝑓𝑀𝑀(𝑢𝑢) Density function of a mixture model 

𝜃𝜃𝑀𝑀𝑀𝑀  dth  components in a mixture model 

𝑝𝑝 Proportion of a component distribution in a mixture model 

𝑡𝑡𝑖𝑖𝑖𝑖 
Probability that observation 𝑖𝑖 belongs to component 𝑑𝑑 of the mixture 

model 

𝐻𝐻𝑜𝑜 Null hypothesis 

αs Significance level 



Dcrit Critical value of D 

p-value Threshold value of αs  

r, z Spatial co-ordinates for stress contours 

v Displacement 

𝜎𝜎𝑟𝑟 Radial stress  

𝜎𝜎𝜃𝜃 Hoop stress 

𝜎𝜎𝑧𝑧 Normal pressure directly beneath the indenter 

𝜏𝜏𝑟𝑟𝑟𝑟 Shear stress 

𝜎𝜎′𝑟𝑟, 𝜎𝜎′𝜃𝜃, 𝜎𝜎′𝑧𝑧, 𝜏𝜏 ′𝑟𝑟𝑟𝑟 Normalized stresses 

𝜎𝜎1,3 Principal stresses in r-z plane 

𝜎𝜎′𝑚𝑚 Hydrostatic stress 

PFP First pop-in load 

PSP Second pop-in load 

𝑃̇𝑃 Loading rate 

 

 

S1. Shear band trajectories and Hertzian contact relations 

The classical Hertz contact theory relates the contact radius, 𝑎𝑎, to the indenter load, 𝑃𝑃, the 

indenter radius, 𝑅𝑅𝑖𝑖, and the elastic properties of the material using the following equation [1]:  

 𝑎𝑎 =  �0.75
𝑃𝑃𝑅𝑅𝑖𝑖
𝐸𝐸𝑟𝑟

�
1/3

 (S1) 

where 𝐸𝐸𝑟𝑟 is reduced modulus which accounts for deformation in both specimen and indenter, 

and can be given as: 

 
1
𝐸𝐸𝑟𝑟 

 =  
1 − 𝜈𝜈𝑠𝑠2

𝐸𝐸𝑠𝑠 
 +   

1 − 𝜈𝜈𝑖𝑖2

𝐸𝐸𝑖𝑖
 (S2) 

where 𝐸𝐸𝑠𝑠 and 𝐸𝐸𝑖𝑖  are elastic modulus of sample and indenter. 𝜈𝜈𝑠𝑠  and 𝜈𝜈𝑖𝑖  are Poisson ratio of 

sample and indenter respectively.  

 



In spherical indentation, the maximum shear stress at the first pop-in, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚, represents the 

critical shear stress required for the onset of plasticity in the indented material. 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 occurs 

directly below the rotational axis at a distance approximately half the contact radius and is 

given as [2,3]: 

 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.31𝑝𝑝𝑜𝑜 =  0.47𝑝𝑝𝑚𝑚  = 0.47 ∗ �
4

3𝜋𝜋
�
𝐸𝐸𝑟𝑟
𝑅𝑅𝑖𝑖
1/2 ℎ

1/2 (S 3) 

where ℎ and 𝑝𝑝𝑜𝑜 are indentation depth and maximum pressure of contact. At PFP, which is the 

first plastic event, τmax corresponds to the local shear yield strength, τy. Similarly, τmax at PSP 

is the shear stress, τSP that represents the second plastic event. Unlike τy, which represents the 

stress that triggers incipient plasticity, τSP is not the actual stress at which the second plastic 

event is initiated. This is because there is some stress relaxation after the first pop-in, which 

causes a drop in the mean contact pressure, 𝑝𝑝𝑚𝑚.  

 

The 𝑝𝑝𝑚𝑚 can be calculated by dividing both sides of eq. (S1) by contact area, 𝐴𝐴 = 𝜋𝜋𝑎𝑎2 = 𝜋𝜋𝑅𝑅𝑖𝑖ℎ, 

and can be written as: 

 𝑝𝑝𝑚𝑚 =
𝑃𝑃
𝜋𝜋𝑎𝑎2

=
4

3𝜋𝜋
𝐸𝐸𝑟𝑟
𝑅𝑅𝑖𝑖
1/2 ℎ

1/2 (S4) 

 

The drop in mean contact pressure is written below: 

 
∆𝑝𝑝𝑚𝑚 =

4
3𝜋𝜋

𝐸𝐸𝑟𝑟
𝑅𝑅𝑖𝑖1/2 (∆ℎ)1/2 

 

(S5) 

The stress drop, ∆𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚, associated with 𝑝𝑝𝑚𝑚 is: 

 ∆𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.47 ∗ �
4

3𝜋𝜋
�
𝐸𝐸𝑟𝑟
𝑅𝑅𝑖𝑖
1/2 ∆ℎ

1/2 (S6) 

where ∆ℎ is the magnitude of the first pop-in displacement.  



Finally, the actual maximum shear stress for initiating the second plastic event, 𝜏𝜏2, can be 

estimated by subtracting ∆𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 from the stress at which second pop-in event, 𝜏𝜏𝑆𝑆𝑆𝑆, occurs and 

can be written as: 

 𝜏𝜏2 =  𝜏𝜏𝑆𝑆𝑆𝑆 − ∆𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 (S7) 

 

The stress field underneath the spherical indenter are: 

 

 

 

 

𝜎𝜎′𝑟𝑟 =  
𝜎𝜎𝑟𝑟
𝑝𝑝𝑚𝑚
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3
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(S 8) 

 

 

 

𝜎𝜎′𝜃𝜃 =  
𝜎𝜎𝜃𝜃
𝑝𝑝𝑚𝑚

= −
3
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 𝜎𝜎′𝑧𝑧 =  
𝜎𝜎𝑧𝑧
𝑝𝑝𝑚𝑚

= −
3
2
�
𝑧𝑧
√v
�
3
�

𝑎𝑎2v
v2 + 𝑎𝑎2𝑧𝑧2

� (S 10) 

 

 𝜏𝜏 ′𝑟𝑟𝑟𝑟 =  
𝜏𝜏𝑟𝑟𝑟𝑟
𝑝𝑝𝑚𝑚

= −
3
2
�

𝑟𝑟𝑧𝑧2

v2 + 𝑎𝑎2𝑧𝑧2
� �

𝑎𝑎2√v
𝑎𝑎2 + v

� (S 11) 

 

where v is the displacement, defined as 

 v = 0.5 �𝑟𝑟2 + 𝑧𝑧2 − 𝑎𝑎2 + �(𝑟𝑟2 + 𝑧𝑧2 − 𝑎𝑎2)2 + 4𝑎𝑎2𝑧𝑧2� (S 12) 

 



The principal stresses in the rz plane are given by: 

 𝜎𝜎1,3 =
𝜎𝜎𝑟𝑟 + 𝜎𝜎𝑧𝑧

2
± ��

𝜎𝜎𝑟𝑟 − 𝜎𝜎𝑧𝑧
2

�
2

+ 𝜏𝜏𝑟𝑟𝑟𝑟2  (S 13) 

 𝜎𝜎2 = 𝜎𝜎𝜃𝜃 (S 14) 

Maximum shear stress, 

 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
1
2

(𝜎𝜎1 − 𝜎𝜎3) (S 15) 

Therefore, 

 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = ��
𝜎𝜎′𝑟𝑟 − 𝜎𝜎 ′𝑧𝑧

2
�
2

+ 𝜏𝜏 ′𝑟𝑟𝑟𝑟
2 (S 16) 

Hydrostatic stress, 

 𝜎𝜎 ′𝑚𝑚 =
𝜎𝜎 ′𝑟𝑟 + 𝜎𝜎 ′𝜃𝜃 + 𝜎𝜎′𝑧𝑧

3
 (S 17) 

 

Using eqs. S29- S38, four different stress trajectories of 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 are plotted in Fig. 3. These 

contours, A, B, C and D represent 2-D projection of potential shear planes where plastic 

deformation may occur in metallic glasses (MGs). The contours are drawn based on the 

Mohr-Coulomb yield criterion, which has been found to capture the pressure sensitivity of 

plastic flow in MGs [1,9,13–19]. 

 

S 2. Statistical procedures employed 

S2.1 Sample size optimization procedure: 

 

In this procedure, the aim is to choose a sample size that is large enough to provide accurate 

and precise estimates of the population parameters of interest. The procedure followed is 

mentioned below: 



1. A vector, 𝑠𝑠 = [𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … , 𝑠𝑠𝑚𝑚], representing a collection of sample sizes, 𝑠𝑠𝑙𝑙, is assumed. 

2. For each 𝑠𝑠𝑙𝑙, N random samples are generated from the probability distribution, 𝑓𝑓(𝑢𝑢|𝜃𝜃0), 

where 𝑢𝑢 and 𝜃𝜃0 represent data and initial parameter space, respectively.  

3. Then, the best fitting parameters for all N random samples of 𝑠𝑠𝑙𝑙, 𝜃𝜃𝑁𝑁
[𝑠𝑠𝑙𝑙]� , are determined.  

4. Finally, the mean, 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
[𝑠𝑠𝑙𝑙] , and variance, 𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣

[𝑠𝑠𝑙𝑙] , of parameter space, for each 𝑠𝑠𝑙𝑙 , are 

calculated using eqs. S7 and S8:  

 
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

[𝑠𝑠𝑙𝑙] =  
1
𝑁𝑁
� 𝜃𝜃𝚥𝚥

[𝑠𝑠𝑙𝑙]�𝑁𝑁

𝐽𝐽=1
 

(S 18) 

 
𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣

[𝑠𝑠𝑙𝑙] =  
1
𝑁𝑁
� (𝜃𝜃𝚥𝚥

[𝑠𝑠𝑙𝑙]�𝑁𝑁

𝐽𝐽=1
−  𝜃𝜃0)2 

 

(S 19) 

As the sample size increases, 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
[𝑠𝑠𝑙𝑙]  tend to 𝜃𝜃0 and 𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣

[𝑠𝑠𝑙𝑙]  approaches zero asymptotically. The 

𝑠𝑠𝑙𝑙  having relatively small 𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣
[𝑠𝑠𝑙𝑙]  correspond to the optimum sample size for the chosen 

statistical model.  

The sample size optimization test is conducted for all the considered uni- and bi-modal 

statistical distributions which include Gausian, Lognormal, 2-parameter and 3-parameter 

Weibull. An illustrative example of sample size optimization test for a 3-parameter unimodal 

Weibull distribution is depicted in Fig. S1. On conducting optimization tests for all the 

statistical models considered in this study (both single component and mixture), a sample size 

of 50 is found reasonably significant for all the models considered [4–6]. 

 



 

 

Fig. S1. Variations of (a) 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and (b) 𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣  with the sample size, sl for the different 

parameters of 3-parameter Weibull model (𝜃𝜃0: Location parameter, α = 0.2, Scale Parameter, 

β = 0.5, Weibull Modulus, m = 3). 𝜃𝜃𝑣𝑣𝑣𝑣𝑣𝑣 is negligible for all values of si > 50 for all the sample 

optimization tests conducted in this study. 

 

S2.2. Statistical inference through maximum likelihood (ML) approach: 

 

Maximum Likelihood Estimation (MLE) is a statistical tool, used to estimate the best fitting 

parameters of a probability distribution by maximizing the likelihood of obtaining the 

observed data. For this, a dataset, 𝑈𝑈 = {𝑢𝑢} is assumed where each data point is represented by 

𝑢𝑢𝑖𝑖 . 𝑈𝑈  is fitted with an arbitrary probability density function (PDF), 𝑓𝑓(𝑢𝑢|𝜃𝜃) , where 𝜃𝜃 

represents the parameter space. For illustration, the Gaussian distribution, for fitting the 

dataset, is chosen, which describes the probability density function as: 

 𝑓𝑓(𝑢𝑢) = �
1

𝜎𝜎√2𝜋𝜋
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝑢𝑢 − 𝜇𝜇)2

2𝜎𝜎2
� (S 20) 

where 𝜇𝜇 and 𝜎𝜎 denote mean and standard deviation, respectively [7,8]. Note that, 𝜇𝜇  and 𝜎𝜎 

represent parameter space, 𝜃𝜃, for Gaussian distribution. To find the best fitting parameters or 

MLEs (𝜃𝜃�), the ML approach needs to be followed. The likelihood function, 𝐿𝐿(𝜃𝜃), can be 

defined as follows, 



 𝐿𝐿(𝜃𝜃) = Π𝑖𝑖=1𝑛𝑛  𝑓𝑓(𝑢𝑢𝑖𝑖|𝜃𝜃) (S 21) 

where n is the total number of data points or the number of indents on the sample. The global 

maxima of 𝐿𝐿(𝜃𝜃) yield the best fitting parameters, 𝜃𝜃�. 

 

S2.2.1. Concept of Profile Likelihood: 

 

The data {𝑢𝑢1,𝑢𝑢2,𝑢𝑢3, … , 𝑢𝑢𝑛𝑛} is assumed to follow a probability distribution with unknown 

parameters 𝜃𝜃 = (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3, … ,𝜃𝜃𝛾𝛾). The likelihood function, 𝐿𝐿(𝜃𝜃|𝑢𝑢), is the product of the PDF 

evaluated at each observed data point and can be written as: 

 𝐿𝐿(𝜃𝜃|𝑢𝑢) = 𝑓𝑓(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3, … . ,𝑢𝑢𝑛𝑛|𝜃𝜃) (S 22) 

 

The profile likelihood for a parameter of interest, say 𝜃𝜃1, is defined as the maximum value of 

the likelihood function when 𝜃𝜃1  is fixed at a particular value and remaining parameters 

(𝜃𝜃2, 𝜃𝜃3, … , 𝜃𝜃𝛾𝛾) are allowed to vary. Mathematically, it can be expressed as: 

 𝜃𝜃� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃1𝐿𝐿(𝜃𝜃2|𝑢𝑢) (S 23) 

where argmax denote the value of 𝜃𝜃2 that maximizes the likelihood function [7–9]. 

 

S2.2.2. MLE for single component distribution functions  

 

MLE for Gaussian distribution: 

The probability density functions (PDFs) for the Gaussian distribution, 𝑓𝑓(𝑢𝑢), is given by: 

 𝑓𝑓(𝑢𝑢) = �
1

𝜎𝜎√2𝜋𝜋
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝑢𝑢 − 𝜇𝜇)2

2𝜎𝜎2
� (S 24) 

where u is the observed data, 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation of the distribution 



The MLE for the mean and variance of a Gaussian distribution can be obtained by 

maximizing the likelihood function, 𝐿𝐿(𝜇𝜇,𝜎𝜎|𝑢𝑢) with respect to the parameters 𝜇𝜇 and 𝜎𝜎. 

The log-likelihood function can be written as: 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇,𝜎𝜎|𝑢𝑢) =  −
𝑛𝑛
2
𝑙𝑙𝑙𝑙(2𝜋𝜋) −

𝑛𝑛
2
𝑙𝑙𝑙𝑙(𝜎𝜎2) −

∑(𝑢𝑢𝑖𝑖 − 𝜇𝜇)2

2𝜎𝜎2
 (S 25) 

 

To find the MLE, the log-likelihood function is differentiated with respect to 𝜇𝜇 and 𝜎𝜎. The 

MLE for mean, 𝜇̂𝜇, : 

 𝜇̂𝜇 =
1
𝑛𝑛
� 𝑢𝑢𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (S 26) 

and the MLE for the standard deviation, 𝜎𝜎�, is: 

 
𝜎𝜎� = ��

1
𝑛𝑛
�� (𝑢𝑢𝑖𝑖 − 𝜇̂𝜇)2

𝑛𝑛

𝑖𝑖=1
 

 

(S 27) 

MLE for Lognormal distribution: 

The PDF for the lognormal distribution, 𝑓𝑓(𝑢𝑢), is given by: 

 𝑓𝑓(𝑢𝑢) = �
1

𝑢𝑢𝑢𝑢√2𝜋𝜋
� 𝑒𝑒𝑒𝑒𝑒𝑒 (−

(𝑙𝑙𝑙𝑙(𝑢𝑢) − 𝜇𝜇)2

2𝜎𝜎2
) (S 28) 

 

The MLE for mean, 𝜇̂𝜇, and standard deviation, 𝜎𝜎�, are: 

 𝜇̂𝜇 =
1
𝑛𝑛
� 𝑙𝑙𝑙𝑙(𝑢𝑢𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 (S 29) 

 𝜎𝜎� = ��
1
𝑛𝑛
�� (ln(𝑢𝑢𝑖𝑖) − 𝜇̂𝜇)2

𝑛𝑛

𝑖𝑖=1
 (S 30) 

 

MLE for 2-parameter Weibull distribution: 

The PDF for the 2-parameter Weibull distribution, f(u), is given by: 



 𝑓𝑓(𝑢𝑢) = �
𝑚𝑚
𝛽𝛽
�
𝑢𝑢
𝛽𝛽
�
𝑚𝑚−1

exp �−�
𝑢𝑢
𝛽𝛽
�
𝑚𝑚
� ,      𝑢𝑢 ≥ 0

0,                                                    𝑢𝑢 < 0
 (S 31) 

where m and 𝛽𝛽 are Weibull modulus and scale parameter of the distribution. Taking the 

logarithm of the likelihood function and setting its derivative with respect to  𝛽𝛽 and m to zero 

leads to a system of non-linear equations, as mentioned below: 

 
1
𝑚𝑚�
−
∑ 𝑢𝑢𝑖𝑖𝑚𝑚� 𝑙𝑙𝑙𝑙 𝑢𝑢𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢𝑖𝑖𝑚𝑚�𝑛𝑛
𝑖𝑖=1

+
∑ 𝑙𝑙𝑙𝑙 𝑢𝑢𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
= 0 (S 32) 

 𝛽̂𝛽𝑚𝑚� =
∑ 𝑢𝑢𝑖𝑖𝑚𝑚�𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (S 33) 

These non-linear equations do not have a closed form solution, and thus cannot be solved 

analytically. Numerical methods such as the Regula Falsi method is typically used to obtain 

the MLEs of m.  

 

MLE for 3-parameter Weibull distribution: 

The PDF for the 3-parameter Weibull distribution, 𝑓𝑓(𝑢𝑢), is given by: 

 𝑓𝑓(𝑢𝑢) = �
𝑚𝑚
𝛽𝛽
�
𝑢𝑢 − 𝛼𝛼
𝛽𝛽

�
𝑚𝑚−1

𝑒𝑒𝑒𝑒𝑒𝑒 �−�
𝑢𝑢 − 𝛼𝛼
𝛽𝛽

�
𝑚𝑚
� ,      𝑢𝑢 ≥ 0

0,                                                                    𝑢𝑢 < 0
 (S 34) 

where 𝛼𝛼, 𝛽𝛽, m are location parameter, scale parameters and Weibull modulus respectively. 𝛽̂𝛽 

and 𝑚𝑚�  are estimated using eq. S21 and S22. 𝛼𝛼� can be estimated by computing the profile 

likelihood of 𝛼𝛼 in [0, 𝑢𝑢1] discretized in steps of 0.01. 

 

S2.2.3. MLE for mixture models via Expectation–Maximization (EM) Algorithm 

 



A mixture model is a statistical model that represents the presence of different sub-

populations within an overall population. The PDF for the two component mixture models, 

𝑓𝑓𝑀𝑀, is obtained by weighted linear combination of each component, as following: 

 𝑓𝑓𝑀𝑀(𝑢𝑢) = 𝑝𝑝𝑝𝑝(𝑢𝑢|𝜃𝜃𝑀𝑀1) + (1 − 𝑝𝑝)𝑓𝑓(𝑢𝑢|𝜃𝜃𝑀𝑀2) (S 35) 

where 𝑝𝑝 is the mixing proportions: 0 < p < 1, and 𝜃𝜃𝑀𝑀1,𝜃𝜃𝑀𝑀2 are the model parameter for a 

mixture model. 

 

Since 𝑓𝑓𝑀𝑀(𝑢𝑢) is a weighted combination of the two component distributions, it has twice as 

many parameters as the component models in addition to 𝑝𝑝 . Therefore, the task of 

maximizing the likelihood function of 𝑓𝑓𝑀𝑀(𝑢𝑢) over such a parameter space is challenging. This 

problem of MLE is assuaged by EM algorithm, which provides a computationally efficient 

way to estimate parameters of complex models.  

 

The EM algorithm is an iterative algorithm used to estimate the parameters of a probabilistic 

model when the observed data is incomplete or contain missing values. In the present study, 

U is deemed incomplete as it is unknown which mixture component 𝑢𝑢 belongs to [9]. 

 

The EM algorithm for MLE of two component mixture models proceeds as follows: 

 

1. Initialize the parameters: 

The parameters 𝜃𝜃𝑀𝑀1,𝜃𝜃𝑀𝑀2 are initialized by setting them to some arbitrary values.  

 

2. Expectation step (E-step):  



In this step, the posterior probability of each observation belonging to each component is 

computed. Let 𝑡𝑡𝑖𝑖𝑖𝑖  be the probability that observation 𝑖𝑖  belongs to component 𝑑𝑑  of the 

mixture model. Then we compute 𝑡𝑡𝑖𝑖𝑖𝑖 using Bayes’ theorem as mentioned below:  

 𝑡𝑡𝑖𝑖𝑖𝑖 =
𝑝𝑝𝑑𝑑𝑓𝑓𝑑𝑑(𝑢𝑢𝑖𝑖|𝜃𝜃𝑀𝑀𝑀𝑀)

∑ 𝑝𝑝𝑑𝑑𝑓𝑓𝑑𝑑(𝑢𝑢𝑖𝑖|𝜃𝜃𝑀𝑀𝑀𝑀)2
𝑑𝑑=1

 (S 36) 

where 𝑝𝑝𝑑𝑑 is the mixing proportion (i.e., weight) of the component 𝑑𝑑.  

 

3. Maximization step (M-step):  

In this step, the estimated parameters are updated based on the posterior probabilities 

computed in the E-step.  

 𝑝𝑝𝑑𝑑 =
1
𝑛𝑛

 �𝑡𝑡𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

     (S 37) 

4. Repeat steps 2 and 3 until convergence, where the convergence is typically determined by 

monitoring the change in the log-likelihood or the model parameters between iterations. 

 

5. Once convergence is reached, the final estimates of the model parameters are obtained.  

 

S2.3. Akaike Information Criterion (AIC) 

 

The AIC is a statistical measure utilized to assess the suitability of the selected model to 

describe the data. The AIC is defined as follows: 

 AIC = −2𝑙𝑙𝑙𝑙𝑙𝑙�𝜃𝜃�� + 2𝛾𝛾 (S 38) 

where 𝐿𝐿�𝜃𝜃�� is the maximum likelihood and 𝛾𝛾 is the number of independent parameters in the 

model, which are listed in Table S1. The model that yields the lowest AIC for a given dataset 

is the best fitting model for that particular dataset. However, it should be noted that the AIC 



is only one of several criteria that can be used for model selection, and it should not be used 

in isolation to make decisions about the best model [10]. 

 

Table S1: Number of independent parameters in different models 

Model Number of independent 

parameters, 𝛾𝛾  

Name of independent parameters 

Gaussian 2 Mean, Standard deviation 

Lognormal 2 Mean, Standard deviation 

2-parameter Weibull 2 Shape, Scale 

3-parameter Weibull 3 Shape, Scale, Threshold 

 

 

S2.4. Kolmogorov-Smirnov (KS) test 

 

To select the best fit distribution from uni- and bi-modal 3W distributions, three goodness-of-

fit tests (Kolmogorov-Smirnov (KS), Anderson-Darling (AD), Chi-squared (CS)) are 

commonly utilized at a significance level (αs) of 0.05. Out of all three, we have employed the 

'bootstrap method' of KS test as it is exact and the statistic is independent of the underlying 

cumulative distribution function.  

 

In this approach, the cumulative distribution function of the distribution is compared to the 

empirical distribution function of the data. The empirical distribution function of the given 

data {𝑢𝑢1,𝑢𝑢2, … . . ,𝑢𝑢𝑛𝑛} can be described as follows: 

 𝑓𝑓𝑛𝑛(𝑢𝑢) =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑢𝑢𝑖𝑖 ≤ 𝑢𝑢

𝑛𝑛
 (S 39) 

The KS test is used to evaluate whether the data comes from null hypothesis (null hypothesis,  

𝐻𝐻𝑜𝑜: the samples come from a particular distribution; alternative hypothesis: the samples do 



not come from a particular distribution) The p-value is the probability that the null hypothesis,  

is true. A smaller p-value (≤ 0.05) indicates that it is false while a higher p-value indicates 

that it is true. Note that the KS test is only appropriate for testing if the candidate models fit 

the experimental data well and should not be used for choosing the appropriate statistical 

model [11,12]. The AIC tests should be exclusively relied upon for model selection. 

 

S3. Kernel density estimate plots 

The shear stress ranges and KDE plots are provided in Table S1 and Fig. S2 respectively. 

 

Table S2: Range of τy and τ2 

Sample 

Range of 
𝜏𝜏y 

(GPa) 

Range of 
𝜏𝜏2 

(GPa) 

% 
reduction 

in 𝜏𝜏y 

(lower 
bound) 

% 
reduction 

in 𝜏𝜏y 

(higher 
bound) 

Average % 
reduction 

in 𝜏𝜏y 

AC1 1.39-2.41 1.25-2.17 10.07 9.96 10.01 

AC2 1.44-2.33 1.32-2.14 8.33 8.15 8.24 

AC3 1.66-2.99 1.47-2.75 11.44 8.02 9.74 

AC4 1.67-3.04 1.5-2.82 10.17 7.24 8.71 

AC5 1.72-3.07 1.55-2.82 9.88 8.14 9.01 

AC6 2.21-3.59 2-3.3 9.50 8.08 9.50 

AC7 2.46-4.29 2.20-3.9 10.57 9.09 9.83 

A1 2.37-4.17 2.12-3.7 10.54 11.27 10.91 

A2 2.39-4.23 2.17-3.8 9.20 5.94 7.57 

A3 2.43-4.28 2.2-3.87 9.46 9.57 9.52 

A4 2.51-4.33 2.25-3.97 10.35 7.24 8.81 

SR2 3.02-4.48 2.52-3.75 16.5 16.29 16.39 



SR3 3.4-5.3 2.85-4.48 16.17 15.47 15.82 

 

  

 

 

 



 

 

 

 



 

Fig. S2. Strength distribution represented as kernel density estimates (KDE) of 1st and 2nd 

pop-in. 
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